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Channel Capacity in the Non-Asymptotic Regime

Consider a discrete input memoryless channel (DIMC)
P = {p(y|x) : x ∈ X , y ∈ Y} with arbitrary output alphabet Y.
By channel capacity, we often meant in the literature Shannon
capacity

C = max
X

I(X;Y ).

In this talk, however, the notion of channel capacity will be used
abusively to also denote non-asymptotic counterparts of C, in
particular, the following quantities:

Non-asymptotic Channel Capacity with Type Constraint
Rt,n(ε): the best channel coding rate achievable with block length n
and codeword type t subject to error probability ε.

Non-asymptotic Channel Capacity without Type Constraint

Rn(ε) = max
t
Rt,n(ε)
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Asymptotic Analysis

Shannon Capacity [Shannon]

lim
n→+∞

Rn(ε) = C for any 0 < ε < 1

Second Order Analysis [Strassen; Polyanskiy, Verdu and Poor; Hayashi]

lim
n→+∞

√
n(C −Rn(ε))

σD(P )
= Q−1(ε) for a constant ε

Moderate Deviation Analysis [Altug and Wagner; Polyanskiy and Verdu]

lim
n→+∞

− ln εn
nρ2

n

=
1

2σ2
D(P )

for Rn(εn) = C − ρn and o(1) ≥ ρn ≥ ω
(

1√
n

)
.

Error Exponent [Fano; Gallager; and many others]

lim
n→+∞

− ln εn
n

= Er(R)

for Rc ≤ Rn(εn) = R < C.
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Tools in Asymptotic Analysis

Asymptotic Analysis Tool

Shannon Capacity AEP, Law of Large Number

Error Exponent Large Deviation Theory

Moderate Deviation Analysis Moderate Deviation Theory

Second Order Analysis Berry-Esseen Central Limit Theorem
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Graphical Interpretation of Asymptotic Analysis

: Shannon Capacity

: Second Order Analysis; : Moderate Deviation Analysis; : Error Exponent Analysis

: Non-asymptotic Regime

n

− ln ε

+∞

+∞
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Non-asymptotic Analysis: Generic Bounds

Error Exponent Bounds [Fano; Gallager; and many others]

Generic one-shot bounds [Polyanskiy-Poor-Verdu Bounds and many others listed in their IT 2010

paper]

For example, Fano’s 1961 achievability bound for a discrete
memoryless channel and Shannon random code ensemble

L(xn, yn) = ln
p(yn|xn)

q(yn)
and q(yn) =

n∏
i=1

q(yi)

Pr {error|c0}
≤ Pr {error , L(c0, Y

n) ≤ L0}+ Pr {error , L(c0, Y
n) > L0}

≤ Pr {L(c0, Y
n) ≤ L0}

+ Pr {∃m 6= 0, L(c0, Y
n) > L0, L(cm, Y

n) ≥ L(c0, Y
n)}

The major effort was on how to bound the second probability.
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Many subsequent achievability bounds followed more or less the
same approach by spending tremendous effort on the second
probability based on ML or Feinstein’s threshold decoding.

Advantage
Generic one-shot bounds look neat and are applicable to any
channel.
They are generally very tight if one can find an effective way to
compute them, which has happened so far only for special
channels such as BSC and BEC.

Disadvantage
Error exponent bounds are generally not tight in the
non-asymptotic regime when the coding rate is very close to the
Shannon capacity
The evaluation of generic one-shot bounds is very challenging for
general channels, especially those without certain symmetric
properties.
Generic one-shot achievability bounds may not be applicable to
codes with structures.
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Key Definitions

Let P be a channel with transition probability p(y|x), discrete input
alphabet X and discrete or continuous output alphabet Y, and t be a
type of sequences in X n.

qt(y)
∆
=

∑
x∈X

t(x)p(y|x)

qt(y
n)

∆
=

n∏
i=1

qt(yi)

I(t;P )
∆
=

∑
x∈X

t(x)

∫
p(y|x) ln

p(y|x)

qt(y)
dy

Pt,δ
∆
= Pr

{
ln
p(Y n|Xn)

qt(Y n)
≤ I(t;P )− δ

∣∣∣∣Xn = xn
}
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Jar Decoding

Encodingmessage cn Channel yn

J(yn)

ĉn

Figure: Jar Decoding

DIMC Jar

J(yn) =

{
xn ∈ T tn :

1

n
ln
p(yn|xn)

qt(yn)
> I(t;P )− δ

}
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Key Idea of Achievability Proof

Error probability is broken into two parts.

Pe ≤ Pr {error , cn /∈ J(Y n)}+ Pr {error , cn ∈ J(Y n)}
≤ Pr {cn /∈ J(Y n)}+ Pr {∃ĉn 6= cn, ĉn ∈ J(Y n)}
≤ Pt,δ +

∑
xn∈J(yn)/{cn}

Pr {xn is a codeword}

When the channel coding rate is close to Shannon Capacity,
Pt,δ is the dominating term in Pe.
the second part can be simply tackled by bounding the size of jar.
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Non-asymptotic Achievability via Jar Decoding

Let C(1)
n,k and C(2)

n,k denote Elias’ Generator and Gallager’s parity check
ensembles respectively.

Theorem (Achievability on Random Linear Code Ensemble)

For any binary input memoryless channel P and i = 1, 2,

Pe(C(i)
n,k) ≤ ε

whenever R(C(i)
n,k) ≤ ln 2−H(X|Y )− δ +

ln(ε−P (i)
δ )

n , and

P
(i)
δ = C(i) Pr

{
− 1

n
ln p(Xn|Y n) > H(X|Y ) + δ

}
< ε (1)

where Xn is a binary uniform i.i.d sequence, Y n is the response of the

channel P to Xn and C(i) =

{
1 i = 1
1

1−2−n i = 2
.
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Non-asymptotic Achievability via Jar Decoding

Let Ct,n denote Shannon random code ensemble with type t constraint
and block length n.

Theorem (Achievability on Shannon Random Code Ensemble
with Type Constraint)

For any discrete input memoryless channel P , any t ∈ Pn and δ,

Pe(Ct,n) ≤ ε

whenever

R(Ct,n) ≤ I(t;P )− δ +
ln(ε− Pt,δ)

n
− |X | ln(n+ 1)

n
(2)

and
Pt,δ < ε. (3)

En-Hui Yang (U of Waterloo) Taylor Expansion October 26, 2012 15 / 50



Non-asymptotic Converse via Jar Decoding

Theorem (Converse)

For any channel code Ct,n of block length n and codeword type t with
rate R(Ct,n) and average word error probability Pe(Ct,n) = ε,

R(Ct,n) ≤ I(t;P )− δ −
ln (Pt,δ − ε)

n
+

lnP (Bt,n,δ)

n
(4)

for any δ, as long as
ε < Pt,δ. (5)
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Non-asymptotic Equipartition Property

NEP with respect to relative entropy

ξ
D,−(t;P, λ, n)e−nr−(t,δ) ≤ Pt,δ ≤ ξ̄D,−(t;P, λ, n)e−nr−(t,δ)

where λ = ∂r−(t,δ)
∂δ .

r−(t, δ)
∆
=

sup
λ≥0

[
λ(δ − I(t;P ))−

∑
x∈X

t(x) ln

∫
p(y|x)

[
p(y|x)

qt(y)

]−λ
dy

]
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An Example of r−(t, δ)

Figure: r−(t, δ) for BSC with uniform t
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σ2
D,−(t;P, λ), MD,−(t;P, λ) and M̂D,−(t;P, λ)

Let Xt and Yt,λ be random variables with joint distribution
t(x)p(y|x)f−λ(y|x) where

f−λ(y|x)
∆
=

[
p(y|x)
qt(y)

]−λ
∫
p(v|x)

[
p(v|x)
qt(v)

]−λ
dv

. (6)

σ2
D,−(t;P, λ)

∆
=E

{
Var

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
(7)

MD,−(t;P, λ)
∆
=E

{
M3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
(8)

M̂D,−(t;P, λ)
∆
=E

{
M̂3

[
ln
p(Yt,λ|Xt)

qt(Yt,λ)

∣∣∣∣Xt

]}
(9)
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ξ
D,−(t;P, λ, n) and ξ̄D,−(t;P, λ, n)

ξ̄D,−(t;P, λ, n)
∆
=

2CBEMD,−(t;P, λ)√
nσ3

D,−(t;P, λ)

+ e
nλ2σ2D,−(t;P,λ)

2 Q(
√
nλσD,−(t;P, λ))

− e
nλ2σ2D,−(t;P,λ)

2 Q(ρ∗ +
√
nλσD,−(t;P, λ)) (10)

ξ
D,−(t;P, λ, n)

∆
=e

nλ2σ2D,−(t;P,λ)

2 Q(ρ∗ +
√
nλσD,−(t;P, λ)) (11)

where Q(ρ∗) =
CBEMD,−(t;P,λ)√

nσ3
D,−(t;P,λ)

, Q(ρ∗) = 1
2 −

2CBEMD,−(t;P,λ)√
nσ3

D,−(t;P,λ)
, and CBE is

the universal constant in the Berry-Esseen central limit theorem.
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δt,n(ε)

Definition of δt,n(ε)

The solution of δ to the equation

e
nλ2σ2D(t;P,λ)

2 Q(
√
nλσD(t;P, λ))e−nr−(t,δ) = ε

where λ = ∂r−(t,δ)
∂δ .

Interpretation of δt,n(ε)

Pt,δ ≈ ε when δ = δt,n(ε).
Major term of the rate penalty from I(t;P ) due to n and ε.
Relative magnitude of n and ε.
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Taylor Expansion of Rt,n(ε)

Expansion of Rt,n(ε) with respect to δt,n(ε)

Under some mild conditions, it is shown

|Rt,n(ε)− [I(t;P )− δt,n(ε)]| ≤ o(δt,n(ε))

whenever ε < 1
2 , where

o(δt,n(ε)) = r−(t, δt,n(ε)) +
(|X |+ 1) ln(n+ 1) + d

n
.
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Taylor Expansion of Rn(ε)

Expansion of Rn(ε) with respect to δt,n(ε)

Under some mild conditions, it is shown

|Rn(ε)− [I(t∗;P )− δt∗,n(ε)]| ≤ o(δt∗,n(ε))

whenever ε < 1
2 , where t∗ is defined as

t∗ = arg min
t

[I(t;P )− δt,n(ε)]

and

o(δt∗,n(ε)) = r−(t∗, δt∗,n(ε)) +
(|X |+ 1.5) ln(n+ 1) + d

n
.
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Comparison with Asymptotic Analysis

Consistency
When ε is constant or non-exponentially decreasing with respect to n
and n→ +∞,

δt,n(ε)→ 0;
t∗ is always within a small neighbourhood of the
capacity-achieving input distribution;

C − σD(P )√
n
Q−1(ε) is very close to I(t∗;P )− δt∗,n(ε);

and therefore, the result is consistent with the second order
analysis and moderate deviation analysis.
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Comparison with Asymptotic Analysis

Divergence
When n is finite and ε is relatively small with respect to n,

δt,n(ε) is not relatively small;
t∗ is not necessarily capacity-achieving;
even when t∗ is capacity-achieving (in some symmetric cases) but
the second term in the following expansion is not small,

r−(t, δ) =
1

2σ2
D(t;P )

δ2 +
−M̂D(t;P )

6σ6
D(t;P )

δ3 +O(δ4)

δt∗,n(ε) does not agree with σD(P )√
n
Q−1(ε);

and therefore, the taylor expansion can yield more reliable
approximation of Rn(ε).
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Optimal Input Distribution t∗ - Z Channel 0 0
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Comparison of I(t;P)−δt,n(ε) for different input distributions

CDIMC−δpX ,n(ε)
I(t ∗ ;P)−δt ∗ ,n(ε)
I(t;P)−δt,n(ε) for uniform t (linear)

I(t;P )−δt,n(ε)

I(t∗;P )−δt∗,n(ε)
for different t

Figure: Illustration for the Z channel with n = 1000 and ε = 10−6: (a)
comparison of t∗ with the capacity achieving distribution; and (b) comparison
of I(t;P )− δt,n(ε) among different distributions t.
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Approximations

Second-Order Approximation

RSOn (ε) = I(t∗;P )− δt∗,n(ε)

NEP Approximation

RNEPn (ε) = I(t∗;P )− δt∗,n(ε)− ln ε

n
+

lnP (Bt∗,n,δt∗,n(ε))

n

Normal Approximation

RNormaln (ε) = C − σD(P )√
n

Q−1(ε)

+
lnn

2n
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Numerical Comparison of Approximations - BSC

p = 0.11 and ε = 10−3 p = 0.001 and ε = 10−6

Figure: BSC with different cross-over probability p and error probability ε
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Numerical Comparison of Approximations - BEC

p = 0.9 and ε = 10−6 p = 0.05 and ε = 10−6

Figure: BEC with different erasure probability p and error probability ε
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Numerical Comparison of Approximations - BIAGC

SNR= −3.52dB and ε = 10−3 SNR= 9.63dB and ε = 10−9

Figure: BIAGC with different SNR and error probability ε
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Numerical Comparison of Approximations - Z Channel

p = 0.9 and ε = 10−6 p = 0.001 and ε = 10−9

Figure: Z Channel with different p = Pr{Y = 1|X = 0} and error probability ε

1

1Changing t∗ to the capacity-achieving input distribution will lower the
bounds DT and Exact.
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Adaptive Modulation and Coding

Channel
Coding

Constellation
Mapping

× × +

√
E h zn

Demodulation
and

Decoding

Channel
Estimate

AMC
Control

Transmitter Receiver

ik cm xn yn îk

γ̂
rate constellation

Figure: Adaptive Modulation and Coding System

1

n

n∑
i=1

|xi|2 = 1. Z ∼ CN
(

0,
σ2

2

)
. γ =

h2E

σ2
.
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Constellation and Coding Rate Selection

Definition

Effective Coding Rate: r = k
m .

Spectral Efficiency: R = k
n .

Constellation X : R = r log2 |X |.
Error Probability: Pr{̂ik 6= ik}.
System Throughput: th = (1− ε)R.

Given several constellations and a channel code with adjustable coding
rate, how to select constellation and coding rate to match channel

condition (or simply snr) in order to maximize the system throughput?
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Optimal Achievable Spectral Efficiency and Throughput of
Modulation and Coding over AWGN Channel

Let X denote the modulation constellation and t denote the type of the
codeword of modulation and coding scheme. A constellation is said to
be normalized with respect to t if∑

x∈X
t(x)|x|2 = 1.

Given a type t and a normalized constellation X , let PX ,γ denote the
AWGN channel with discrete input X and snr γ.

Optimal Achievable Spectral Efficiency and Throughput
RX ,t,n(γ, ε) and thX ,t,n(ε) are optimal achievable spectral efficiency
and throughput respectively with block length n and modulation
codeword type t subject to error probability ε over AWGN channel PX ,γ .
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Approximation of RX ,t,n(γ, ε) and thX ,t,n(ε) based on Taylor
Expansion

Approximation of RX ,t,n(γ, ε)

RX ,t,n(γ, ε) ≈ I(t;PX ,t)− δt;PX ,γ ,n(ε)

Approximation of thX ,t,n(ε)

thX ,t,n(ε) ≈ max
ε

(1− ε)RX ,t,n(γ, ε)

Denote the optimal solution ε of above maximization problem by
εthX ,t,n(γ) and RX ,t,n(γ, εthX ,t,n(γ)) by RthX ,t,n(γ).

Here δt,n(ε) is redefined as δt;PX ,γ ,n(ε) to emphasize its dependency on
the channel.
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Selecting Rule based on Approximation

Suppose {Xi}mi=1 are available constellations in an adaptive
modulation and coding system.

Selecting Rule
S1 For any snr γ, calculate thXi,t,n(γ) for 1 ≤ i ≤ m and determine

i∗ = arg max
1≤i≤m

thXi,t,n(γ).

S2 Select Xi∗ as the desired constellation, and calculate the desired
ECR according to

r =
RthXi∗ ,t,n(γ)

log2 |Xi∗ |
.
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Modified Selecting Rule

Considering the snr penalty incurred by the practical implementation of
demodulation and decoding, the selecting rule is modified as follows.

Modified Selecting Rule
S1 Determine, for each constellation Xi, the the snr penalty ∆γi.
S2 Calculate thXi,t,n(γ −∆γi) for 1 ≤ i ≤ m and determine

i∗ = arg max
1≤i≤m

thXi,t,n(γ −∆γi). (12)

S3 Select Xi∗ as the desired constellation, and calculate the desired
ECR according to

r =
RthXi∗ ,t,n(γ −∆γi)

log2 |Xi∗ |
. (13)
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Adaptive Modulation and Coding in LTE System
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Figure: Adaptive Modulation and Coding in the LTE system
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CQI Table

CQI Index Modulation ECR MPR
1 QPSK 78/1024 0.1523
2 QPSK 120/1024 0.2344
3 QPSK 193/1024 0.3770
4 QPSK 308/1024 0.6016
5 QPSK 449/1024 0.8770
6 QPSK 602/1024 1.1758
7 16QAM 378/1024 1.4766
8 16QAM 490/1024 1.9141
9 16QAM 616/1024 2.4063

10 64QAM 466/1024 2.7305
11 64QAM 567/1024 3.3223
12 64QAM 666/1024 3.9023
13 64QAM 772/1024 4.5234
14 64QAM 873/1024 5.1152
15 64QAM 948/1024 5.5547
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LTE CQI Reporting Rule

In LTE system, the selection of constellation and coding rate based on
channel snr is made at the receiver side, considering the fact that there
may exist different implementation of demodulation and decoding at
the receiver side.

CQI Reporting Rule
The receiver should send the highest CQI index under the combination
of constellation and coding rate of which the error probability ≤ 10−1

can be achieved.
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Apply Modified Selecting Rule to LTE System

Determine ∆γ for QPSK, 16QAM and 64QAM.
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Apply Modified Selecting Rule to LTE System
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Zoom in SNR Region 4dB-5dB

According to CQI reporting rule, CQI 6 should be selected at snr 4.6dB.
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Throughput Gain of Constellation and Coding Rate by Modified
Selecting Rule

QPSK and ECR 720
1024 are given by modified selecting rule.
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Zoom in SNR Region 11dB-13dB

According to CQI reporting rule, CQI 10 should be selected at snr
12dB.
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Throughput Gain of Constellation and Coding Rate by Modified
Selecting Rule

16QAM and ECR 789
1024 are given by modified selecting rule.
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Conclusion

Review of asymptotic analysis of Rn(ε).
Non-asymptotic Achievability and Converse via Jar Decoding, and
Non-asymptotic Equipartition Property.
Definition of δt,n(ε) and its interpretation, i.e. the relative
magnitude of n and ε.
Taylor Expansion of Rt,n(ε) and Rn(ε) with respect to δt,n(ε).
Comparison of Taylor Expansion with asymptotic analysis.
Implication of Taylor Expansion on input distribution and practical
code design.
Numerical comparison of SO and NEP approximation derived
from Taylor Expansion and Normal Approximation.
Application of Taylor Expansion to LTE system.
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Thanks.
Question?
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